Reflections on the potential of human power for transportation

Monday, March 4, 2024

A Full-body Exercise Recumbent: The Omnidyne 3P

 


My readers will recall that I previous did a post on my experience adding arm power to my Avatar recumbent.

http://lefthandedcyclist.blogspot.com/2012/03/arm-power-and-avatar.html

Now to recap, the Avatar approach used a bolt-on rocking-handlebar and a freewheel added to the left side of the crank axle. Pulling on the handlebars pulled on a chain passing under the crank freewheel moving the pedals forward. A spring attached to the other end of the chain moved the handlebars backward when the pulling force was removed. The linkage connecting the handlebars to the steering was designed to decouple the rocking from the steering.

This arm-power-mechanism worked fine for riding on the flats but was not efficient for climbing hills. Since the handlebars moved at about half the speed of the pedals, the force from pulling on the handle bars was applied every other pedal stroke. On hills this resulted in there being more torque than needed for half the cycle and less for the other half.

The solution was to be able to push the handlebars as well as pulling them. The arms would contribute torque on each  pedal stroke.

 I would need two freewheels to accomplish this and couldn't fit them both on the left side of a single crankset. This meant I would have to add a second bottom bracket with three chainrings on the right side and two freewheels on the left. On the right side, innermost chainring would be connected to a single chainring driven by the pedal crankset.  This would be mounted in front of the second bottom bracket. Back to the right side, the middle and outer chainrings would drive the rear cassette in the conventional manner. 

The presence of a second bottom bracket required that I build a new frame to support it. And I realized that if I mounted the pedals directly over the 16" front wheel, I could shorten the wheelbase of the new bike by 12" when compared to the Avatar. The steering decoupled handlebars would be transferred from the Avatar but modified to facilitate the dual drive.




The freewheels used were the same size as used on the Avatar. Since the force produced by the handlebars with the Avatar was well matched to the pedaling, the goal was to keep things the same for the Omnidyne. The rocking handle bar has two beams attached to it, one on either side of the freewheel  pair. Pulling back engages the outer freewheel while the other freewheel ratchets. Pushing forward engages the inner freewheel while the outer freewheel ratchets. The beams started as the same length used on the Avatar, but since a greater force could be produced pushing compared to pulling, the pushing beam was lengthened. The distal end of each chain is attached to a spring to keep them taught.

As of late I haven't painted the parts and the Omnidyne has not been ridden outside. I like the new motion so much I have been using it as an exercise bike for the last year. I am confident that the push, pull, pedal motion, (3P), will drastically improve the bike's hill climbing.

Hephaestus 







Sunday, September 4, 2022

Transcending the Pedicar: The EcoVia Mk3




                                  The EcoVia Mk2.4, the best packaged, most aerodynamic version.

For those of you new to the blog or those of you that haven't followed it in a while, the EcoVia project was intended to design and build an all-weather ped-electric commuter tricycle. To reconcile having a narrow width and rider height that was visible to motorists, it would incorporate leaning to improve roll-over-resistance, ROR.

The initial concept was a tadpole configuration with pedal-drive to the two front wheels and a steered- motor driven rear wheel. ( I refer to this as the Dymaxion layout in reference to Bucky Fuller's famous Dymaxion Car)

https://www.blogger.com/blog/post/edit/7497191769424400596/839528612731061124

Now there are two ways to control the leaning of a tricycle. The first is free-leaning, where you balance like a bicycle. The second is to control the lean manually in addition to controlling the steering. Rear-steering bicycles are, at best, difficult to ride. A free-leaning rear-steering tricycle has similar issues, so the initial design intent was to control both steering and leaning with the same motion. Since the amount of lean is a function of steering angle and vehicle speed, this approach can only be approximate at best. 

Below is the control mechanism for the EV1.4

Unfortunately, combining leaning and steering can lead to the undesirable phenomenon of bump-steer where, when a steered wheel hits an obstacle, the steering is perturbed unexpectedly.  This occurred during a medium speed test run. I was upside down in the road before I knew what hit me. I pushed the trike back home and never road the EV1.4 again.

After a period of reflection I realized the only thing to do was flip the wheel arrangement around into a delta configuration. With the rear steering gone, the delta trike leaned and balanced like a bicycle. I had my design. Several design iterations followed to drop the bottom bracket height and use a large Q bottom bracket to maximize pedal-wheel clearance. EV2.3 resulted.

I had no problems starting and stopping with the EV2.3 until I added a faring.



 As often as not, I would tip over before getting started of trying to stop. I had a lever that would lock up the leaning, but the trike was not always upright by the time I activated it. So I came up with a no-lean lock lever. If I was only partially leaned over, pulling the lever did two things. It pushed the trike upright and it locked it in that position.



Given the no-lean-lock lever and it's reduction in crashes, I was confident enough to do some speed tests. I was able to comfortably cruise at about 25mph on the flats.  This confirmed the validity of the design concept.

Jerry Onufer, a fellow HPV'er, visited shortly after, and I asked him if he would like to ride the EV2. He declined, saying that a vehicle that mixed being static with balancing would be too difficult for a new rider to master. And there is more than a bit of truth to that. I was riding the EV2 down a highway and forgot that the no-lean-lock was not engaged. I leaned over and weaved across the road. Fortunately there was no traffic or my HPV days would have been over.

So the EV2 was not ready for prime time, and it was back to the drawing board.

I felt that the trike needed to be statically stable and upright for starting and stopping when enclosed in a faring. To address Jerry's concerns, I decided to eliminate free leaning from the design for the EV3. I also added the ability to manually add leaning when executing tight turns.

Six change were incorporated into the EV3.

1. Increase the rear-wheel track from 20" to 30". The static ROR would be 0.45 gees. 
2. Add a lean lever to manually lean the trike +/- 17.5 deg. to increase the ROR to 0.8 gees.
3. Change the wheel diameters from 20" to 16".
4. Change all the brakes from calipers to disks.
5. Lower the bottom bracket height by 6" 
6. Incorporate a geared hub motor to the front wheel.

Below is my work-in-progress ped-electric trike, the EV3, shown without its faring.
 







The initial faring in the picture below is 4" higher at the riders head than the final design.

The EV3 is a delta e-trike with the ability to be statically tilted using a long lever on the riders left side.

The seat height is 20" and with a bottom-bracket height of 14.4", the riding position is very comfortable.  The rider's head at car level. Cranks are 165mm.

Vehicle weight without the faring is 99 lb.  The faring weighs 23 lb.

The battery is 36V which gives a top speed of 15mph. The motor is a geared-hub motor that stops contributing to propulsion at its max speed. The design intent was to have plenty of torque for hill climbing. So much torque, that the front wheel brakes loose if too much throttle is applied when starting. 

For comparison the EV3 has a width of 33"(838mm) and a riders head height of 49"(1245mm)

The EV4 is currently in the design  phase. Because free leaning has been eliminated, I can return to the EV1 tadpole configuration with a Dymaxion layout. The foot-front-wheel interference is removed. The intermediary bottom bracket and its associated chain will be gone. The beam suspension will be replaced by springs in the lean linkage, in addition to adding suspension to the rear wheel. These, and other integrations will significantly simplify construction and reduce weight. 



Wheel pants will streamline the front wheels which will be outboard of the fuselage. In addition the rear-motor wheel will use dual tires to improve traction and insure steering control is maintained in the event that one of the tires goes flat. 




Hephaestus











Thursday, August 25, 2022

Dave Wilson and the Improved Safety Bicycle Part 2: Outriggers

Recall from the previous post that the late Prof. David Gordon Wilson reintroduced recumbent bicycles to the public as safer bicycle in the mid-1970s. Interest in recumbent bicycles had languished and a design competition he sponsored in the late 1960s resulted in him building and riding recumbents to work. Ultimately Wilson was featured in a Mobil Oil Ad and he became the face of the recumbent bicycle.

https://www.youtube.com/watch?v=lYbfz4vCczg

Wilson felt that the lower, feet-forward riding position of a recumbent bike would reduce injuries from falls and front end crashes. Wilson advocated under-seat steering to remove the handlebars from the rider's path in the event that the rider was pitched forward during abrupt stops.

He was very cognizant of the fact that the bicycle's simplicity and consequent low cost contributed greatly to its popularity a transportation alternative for many people.

One feature Wilson did not pursue was improving stability on slippery surfaces by adding an additional wheel. Possibility this was because an additional wheel (or two) complicates the construction of the bicycle significantly.

There are at least three conditions that would necessitate needing a statically stable layout instead of a bicycle. The rider has trouble balancing a bicycle. The rider climbs very steep hills that are difficult to balance on. The rider rides on slippery roads and trails.

Now, even though Wilson's recumbent experiments dealt with bicycles, his first edition of Bicycling Science did include a sketch of an enclosed bicycle with outriggers.  

Notice that the outrigger position front-to-back brackets where the cg location is typically located. This insures maximum roll-over resistance for a given track of the outrigger wheels.

Now, I am sure that the intent was that the outriggers would only be used for starting and stopping. But could they be designed so the bicycle could be ridden under transportation conditions with them extended, producing a four-wheel diamond-layout vehicle for improved safety?



I propose to use the outriggers a bit differently than usual. The outriggers would share a common pivot on the frame. They would always stay in contact with the ground. There would be a spring located between them that kept both of them in contact with the ground no matter the flatness of the surface. There would be a spring stop between them that insured they moved together once the spring was compressed.

The outriggers could operate either of two ways. If the common pivot was locked to the frame, the vehicle would act like a fixed four-wheeler. For example when the vehicle was parked or riding on a slippery surface. If the pivot was unlocked it could free lean like a bicycle.

An alternative to free leaning is to have a lever that would control the angle of the frame to the outriggers, allowing leaning to be adjusted by the motion of that lever. Leaning would not be automatic like free leaning but would require the rider to control the amount of lean consciously.

So, if the outriggers are to be in ground contact all the time, why not make the vehicle a quad by providing four regular wheels? In the US and Canada, four-wheel pedaled vehicles are not classified as bicycles or tricycles. The designation is particularly important if the vehicle is electrified and operates on bike paths and bike lanes.

The bike with outriggers I am proposing should be legally considered as a bicycle because the outriggers are like training wheels on a regular bicycle and are ancillary to the basic design.

Hephaestus

 
 



Sunday, August 21, 2022

Dave Wilson and the Improved Safety Bicycle Part 1

 We can consider the late Prof. David Gordon Wilson, emeritus professor of mechanical engineer at MIT and author of four editions of Bicycle Science, the technical bible for all-things bicycle, as the father of the modern recumbent bicycle. 

Wilson was a life long bike commuter and environmentalist and rode a small-wheeled Moulton to work. When Wilson launched his bicycle redesign competition in 1967, his goal was to encourage the development of a safer bicycle.

http://lefthandedcyclist.blogspot.com/2019/10/david-gordon-wilson-father-of-modern.html

 With Fredrick Willkie, Wilson developed the Wilson-Willkie recumbent.

The Wilson-Willkie received national exposure when it was featured in a Mobil Oil commercial in 1976.

https://www.youtube.com/watch?v=lYbfz4vCczg

The Wilson-Willkie evolved into the Avatar 1000 and then into the Avatar 2000 which went into production in 1980, being the first commercial recumbent since the Second World War.

Wilson's efforts in recumbent bicycle development duplicated the efforts of inventors in the 1930s to improve on the third generation safety bicycle. These previous efforts were banned from competition by the Union Cycliste Internationale because they felt the aerodynamic improvements of the reclining posture offered riders an unfair advantage.

http://lefthandedcyclist.blogspot.com/2013/12/the-technical-history-of-bicycle-part-3.html 

As it turned out, the Avatar 2000 was too unwieldly to carry up the multiple flights of stairs to his office at MIT,  so Wilson returned to a shorter design, finally ending up with a timing-belt drive that coupled the cranks to an intermediate bottom bracket-chainring assembly.




Wilson felt that two design changes made his recumbents safer that the current bicycles. Lowering the seat height about 12" reduces the injuries associated with the rider falling over and placing the feet forward insures that the rider's feet strike a forward obstruction before the head.  All of Wilson's recumbents use under-seat steering which is not only very comfortable but also safer than upright bars. In the event that the rider was flung forward during hard braking, the rider is not hooked on the bars.
Now, because of what I refer to as the recumbent-packaging problem, Wilson's recumbents came with an undesirable consequence. 

http://lefthandedcyclist.blogspot.com/2012/03/recumbents-and-convergent-evolution.html

The Wilson-Willkie had a very highly loaded front wheel. This resulted in reduced tire life and the possibility of pitching forward in the event of an emergency stop.

The Avatar 2000 had a very lightly loaded front wheel that could loose traction and steering control on slippery surfaces. 


The chart above shows weight distributions for Wilson recumbents and conventional upright bicycles.

Now either of two approaches can be used to achieve a more optimal weight distribution. The first is to raise the bottom bracket above the front wheel to allow the correct wheel spacing without foot-wheel interference. Wilson resorted to this approach on his last prototype designs.

The second is to place the bottom bracket adjacent to the fork crown and use a large Q bottom bracket to maximize pedal-wheel clearance. To prevent chainring-wheel interference an intermediary bottom bracket may be required to achieve a high enough gear ratio. Since Wilson is using an intermediary bottom bracket with his timing-belt drive this would not be an extra complication. This approach would also reduce the wheelbase of the Avatar 2000 by 10in.

This is an approach I have used in the past and would recommend. A near ideal weight distribution front to back of close to 39/61% can be achieved.

So, like Wilson, I would conclude that the recumbent posture makes a safer commuter bicycle than an upright bicycle, as long as the rider's posture is similar to an automobile driver's. And after riding an Avatar 2000 for over 37 years I would add that it is much more comfortable to ride. Despite the above facts, 42 years after the launch of the Avatar 2000, recumbent bicycles are only a small part of the bicycle market, despite the fact that Trek, Cannondale and Giant produced recumbent bicycle models.

One should remember that the bicycle's popularity stems from the fact that it is a relatively simple device which can double the users speed for a given level of effort. Wilson's modifications to create recumbents increased the complexity of the seat and in some cases added an intermediate bottom bracket, but the overall simplicity was maintained.

Hephaestus

 





 
 




Sunday, March 28, 2021

The Podbike and the Quadracycle Quandary Part 2


 From the previous post, we concluded that the Podbike, with a few refinements, was an environmentally responsible vehicle for a single individual to take short trips using pedal and battery power. The problem was that having four wheels, if did not constitute an e-bike in the US and Canada. 

 If we were to convert the design to static three wheeler and maintain the roll-over resistance, ROR, the width would have to increase by 50%, making the trike too wide to share the road with autos of share a bikeway with other cyclists. And converting the design to a leaning trike would increase the cost and complexity.

So, can we eliminate the electric assist and match the top speed of a Class 3 e-bike, 28mph? Since extremely streamlines recumbent bikes have covered a flying 200m at over 90mph and were ridden over 57 miles on a track in an hour, this should be very doable.

Let's take another look at my all-time favorite all-weather, pedal-powered commuter vehicle, the Pedicar. It was designed by two aerospace engineers, Robert Bundshuh and Lionel Martin and produced in 1973. The Pedicar is discussed in detail in "Pedicar Technology" in a previous post.

https://www.youtube.com/watch?v=zvh44wzhw9c

Several factors prevented the Pedicar from becoming popular. Only 20 vehicles were produced. At $550, it was expensive compared to an average bicycle and had a top speed of only about 18mph.

How would one make the Pedicar more efficient so your average cyclist could pedal comfortably at 28mph?

The main speed limiter was the drivetrain followed by the aerodynamics.

The Pedicar had a linear-motion constant-treadle pedal drive (see " Lure of the Linear Pedal Drive" in a previous post) connected to a 5-speed transmission. Bundshuh incorrectly assumed that the constant treadle would produce a 50% power increase over circular pedaling. It could produce a 50% torque increase, but the deadspots at the extremes of the pedal stroke prevented even rotary-pedaling power levels from being realized. The pedals were not coupled together and that prevented a smooth pedaling stroke. One benefit of the linear pedal stroke was the nose of the Pedicar was lower than it would have been with circular pedaling. This resulted in a very unobstructed view of the road ahead of the vehicle.

Possibly an even bigger problem was the transmission. It had five speeds and allowed a range of 1:6.8, but the step size was 60%. The size of the steps never allowed the rider to get in a comfortable gear. A derailleur system has significantly smaller steps and combined with a rotary crank was considerably lighter. The weight of the Pedicar as 125lb. So some weight reduction is in order. 

So we could replace the Pedicar transmission with a 1x12 mountain-bike drive that has a ratio of 1:5.6 and a step size of 17%. To minimize the swept pedal volume at the nose of the vehicle we could use 160 to 165mm cranks with a bottom bracket having a low "Q" factor. 

The other area for improvement is the aerodynamics.

The exposed wheels are the biggest problem. The top of the tire is entering  the airstream at twice the speed of the vehicle. So the airdrag of that tire is 4X the drag of a tire that is not rotating. The solution is to enclose each wheel in what the aviation world calls a wheel pant. 

A place to look for ideas for streamlining a single-person, four-wheel vehicle is Extreme Gravity Racing.

Many of the racers use a bod-pod + wheel-pod approach for their layouts. Even though the drag coefficient, Cd, is larger than if the driver and wheels were enclosed in a single body, the cross-sectional area is significantly lower and the product of Cd*A is low enough to  produce a noticeably more streamlined vehicle.  

The picture at the beginning of the post is a corporate entry gravity racer from General Motors. Now the picture is deceptive because the GM car is very low and the wheels are only 12" in diameter.



The height of the GM racer would need to be raised to the 1.15m minimum recommended in the previous post. The width over the wheel pants would need to be no more than 1m. For the front wheel-pods, the wheel pants would need to be enlarged to accommodate 16"dia. tires. They would also be wider to house the steering kingpins and disc brakes. The front support beams that attach the wheel-pods to the bod-pod must house brake cables and the tie-rod linking the wheel together. The rear support beam only needs to house the drive axle, since the brakes can be located inboard in the bod-pod. This would result in the rear wheel-pods being narrower than the front. The nose of the bod-pod would need to be greatly enlarged to house the swept volume of the feet on the pedals.

In the end you might wind up with something that looks like the doodle below.


Now there is an interesting consequence of having our all-weather commuter vehicle use four wheels. In a previous post, "Pedaling Along the Skyway", I talk about elevated bikeways. If these bikeways use wheel tracks to simplify construction, then a four-wheeler only requires two wheel-tracks.
 
Another consequence is that the tracks could supply electric power to the vehicle. The vehicle could incorporate an electric motor to drive the rear wheels but it wouldn't include a battery. Thus, when not on the bikeway, it would not be an e-bike. It would be an e-bike only when is is using the electricity from the bikeway. Getting to and from the bikeway would only be on pedal power. This approach should allow the quad to use regular bike ways and streets like conventional bikes and trikes.

Hephaestus
  





 

Friday, March 19, 2021

The Podbike and the Quadracycle Quandary Part 1



I have been reading Bill Gates' book " How to Avoid a Climate Disaster". Now one of Bill's remedies for the intolerable levels of CO2 in the atmosphere is to use electric cars. I am sure he would applaud the design of the Podbike as an environmentally responsible means of single-person short-distance travel.

https://www.youtube.com/watch?v=6OSSMteU4qY

As the commentator above points out, the vehicle he is testing is only a prototype. As such, we can assume that the issues he encounters will be addressed in the production version. Things like the lag between pedaling and vehicle motion, the harsh jolts from the front wheels when going over curbs and a clear canopy that will heat up like a greenhouse on a warm days. 


The Podbike has a very futuristic but functional appearance an should be very weatherproof. 

The most novel feature, however is its totally electric drive. The pedals drive a generator and there are motors in each of the rear wheels. You can drive the motors by pedaling, with the battery or both. You can brake and regenerate by backpedaling. You can also back up by pedaling backwards. You don't need any gearing and having a motor for each rear wheel eliminates the need for a differential.

The biggest drawback with this design, if you are a US or Canadian customer, it it is legally not an electric bike or trike and must be considered a small car. The three wheel regulation is archaic and is a simplistic interpretation of what constitutes a pedal-propelled vehicle.

Given the option of designing a vehicle with either three or four wheels, what would be the reasons for picking three instead of four?

There are legal reasons. If you are building an automobile, having three wheels allows it to be classified as a motorcycle if the weight is less than 1500 lb. With this comes reduced safety regulations, which in turn result in a lower-cost vehicle. And if you are designing a light-weight pedal-electric vehicle, it allows it to be classified as an e-bike.

From the technical standpoint, there are a few reasons. If you steer the single wheel, the steering can be very simple. The vehicle can be more aerodynamic if one chooses the tadpole layout. And a suspension is not required for all the wheels to touch the ground simultaneously. 

But there is a huge disadvantage selecting three wheels when you could use four wheels, roll-over resistance, ROR for short.


For a given center-of-gravity, c.g. height and an equal weight distribution on the wheels, a three-wheeled design has 2/3 the ROR of a four-wheeled design.

Consider the Aptera,  a three-wheel, two person electric car that is getting a lot of press lately.
The width of a Honda civic is about 70in. The width of the Aptera is 88in. 18 additional inches to compensate for the reduced ROR for a three-wheel layout.

The width of the Podbike is 33in. You could expect this to increase to 48" it maintain the same ROR. This brings the width to that of the Organic Transit Elf, which I consider to be too wide to share the roadways with cars and even bicyclists on bike paths.


As a tool for comparison let us look at a very well, if not the best designed velomobile available, the Leitra. Designed by Prof. Carl Georg Rasmussen in 1980, over 260 units had been produced by 2015 and it has been continually improved. The Leitra is an all-weather tadpole trike that is about 1m wide and about 51in high. The rear wheel is driven and the front wheels are steered with all wheels having suspension. The ROR is probably close to 2/3gees. 

In Washington State, where I live, a new class of e-bike has been added. Class 3 allows a top speed of 28mph with both the rider pedaling and e-motor assist. The pervious top speed, Class 2, was 20mph. For a given turn radius, a 28mph turn experiences twice the gees of a 20mph turn. So ROR is an important performance metric. 2/3gees might have been good for a 20mph top speed but it is probably inadequate for 28mph. A turning radius for a 1gee turn at 28mph is 52ft.

The ROR for the Podbike is probably about 1gee. I the design was converted to a three wheeler, the vehicle width would become too wide and like the Elf,  make the velomobile impractical.

Those of you who are not new to my blog know I have spent a lot of time designing and building leaning trikes. Theoretically, a leaning trike can have 33% more ROR than a four-wheeler and double that of a three-wheeler for a given track and c.g. height. This performance increase comes at the price of greater complexity. If the vehicle is completely weatherproof, entry and exit require the vehicle be in a statically-stable mode and then transition to a leaning mode when in motion. The mental adjustment going from static to leaning is not trivial and can be confusing. Although there are several leaning trike designs that have been produced, IMO, none are up to the task of an all-weather pedelectric commuter vehicle like the Podbike. 

So what is the answer? I think that four-wheelers (quads) should be legal e-bikes. In addition to regulating power, (mopeds can have up to 1500 kW motors) regulate the vehicle dimensions. If the e-quad is ridden along the edge of a roadway or on bikeway adjacent to said roadway, limit the the width to 1m and require the height to be at least 1.15m. If the e-quad is lower than 1.15m, require the use of a bike flag at least 1.5m high. Don't try to regulate speed. Let the speed limits of the infrastructure be the controllers. 15mph for bikeways and the posted speed limits of the roadways. Just like regular bicycles.

It is counterproductive to let antiquated regulations eliminate environmentally-responsible transportation solutions. 

Hephaestus











 

Sunday, May 10, 2020

Velomobiles, E-trikes and the Transportation Infrastructure




It has been forty years since the Reader's Digest Magazine published this digest of a New York Times article from August of 1980. That summer, at the International Human Powered Speed Championships, a streamlined tandem tricycle, the Vector, was the first human-powered vehicle to break the 60mph barrier for a flying 200m speed run. But what captured the media's attention was that same tandem trike was pedaled from Stockton to Sacramento California on Highway 5 covering 41.8 miles at an average speed of 50.5 mph. Finally, it seemed that streamlined human-powered vehicles could provide a  viable, healthy alternatives to the automobile. 

In this vein, the magazine article described a hypothetical future commute to work by "Joe Wheeler", pedaling a single-person, Vector-like velomobile, the Shooting Star. Joe, riding along dedicated human-powered-vehicle lanes, covers 25 miles at an average speed of 60mph.

The article goes on to show a schematic of the single-person Vector.


And I have added a close-up photo of the Vector's interior. Note that the width of the Vector is 25in. and the height is 32in.


So 40 years has passed and why aren't people zipping to work in bullet shaped tricycles? One answer is transportation infrastructure. There are no limited-access high-speed bike paths for vehicles like the Vector. I do occasionally see a bright-yellow Quest velomobile on the local bike way, but I have never seen it in the bike lanes adjacent to local roads.



Now the progression in HPV speeds has continued in the ensuing 40 years. The longest distance covered in an hour is 58 miles and the flying 200m record is almost 90mph. The current trend has been to use a two-wheel layout since the aerodynamics are significantly better than three and four wheel designs.

The Vector trikes, like the dragsters of the automotive world, were limited-use vehicles. The same small cross-section that made them so aerodynamic also made them very difficult to see from the perspective of an automotive driver. During its record setting 42 mile highway run, the Vector tandem was bracketed, front and back, by guard vehicles to protect it from autos merging into the space it occupied. The limited wheel lock for the steered front wheels made only large radius turns possible. The lightweight high-pressure tires required a clean road surface to prevent punctures. And the rider in the Vector had a limited field of view. Not to mention that a light 51 lb. vehicle provides woefully inadequate crash protection for a vehicle traveling at 60mph. Finally, these low-narrow layouts require the assistance of at least another person for the rider to get in and out of the vehicle 

Now, after the Vector speed records, Alan Carpenter, a designer from Colorado, build a production vehicle that he felt would be a practical human-powered vehicle. The Cyclodyne was a very well thought out and well-engineered vehicle.




The Cyclodyne was a tadpole trike, like the Vector. It was, however higher at 40in. for better visibility and wider at 38in. to provide the necessary roll-over resistance. It even incorporated driven front wheels to double the drive traction over the typical tadpole trike. A fit cyclist could pedal the Cyclodyne at over 30mph.

One owner related a critical problem with the Cyclodyne. Even being pedaled at 35mph, it was not fast enough to prevent traffic backups behind it  when ridden in automobile lanes. The motorists didn't know what to make of the vehicle. In frustration, he finally removed the faring so the drivers could see he was operating only on pedal power. His speed fell drastically, but the cars lost their reluctance to  pass him and the backups were eliminated.

Since the Cyclodyne was only 38in. wide, it would comfortably fit within most bike lanes located adjacent to many roadways but it was not fast enough to be interleaved with automobiles. The appropriate traffic infrastructure wasn't available for the above owner.

The Cyclodyne demonstrates that, with a bit more attention paid to aerodynamics, an enclosed all-weather trike could reasonably be expected to have a top speed of over 40mph.

So back to transportation infrastructure. Where could such a vehicle be ridden? Do legal vehicle speeds preclude the use of such vehicles? 

A catalog of the places and speed limits for use in the Seattle, Washington reads something like this:

Sidewalks, no speed limits
Residential streets, 25mph
Local roads, 35 to 40mph. Most of these roads have adjacent bike lanes.
Interstate highways. 60mph in the city and 70mph outside the city. Many of the highways outside the city have wide shoulders that allow cyclists to safely use them.

So residential streets and any other roads with adjacent bike lanes would be acceptable. For safety reasons there are the two requirements that the vehicle should be clearly visible to motorists and narrow enough to not obstruct traffic. A Cyclodyne-like vehicle satisfies these requirements.

Carpenter made one bad decision that limited the sales of the Cyclodyne. Its price tag of $4000 in 1980's dollars. He justification was that Early Winters, an outdoor outfitter in Seattle, was selling a used Vector trike for $10,000. Now the the Vector cost was not representative of a production vehicle. There was only one of them and it never sold. It ultimately was donated to a Seattle human-powered vehicle club.

Let us assume that a Cyclodyne-like tadpole trike, with some aerodynamic improvements would allow a reasonably fit rider to reach 40mph without sprinting. So the technology predicted in the Reader's Digest article exists, albeit at a 40mph level instead of a 60mph level.

(In fact, since the Cyclodyne already had front-wheel drive, one big improvement would be to allow the rear wheel to do the steering. The front wheels would present less frontal area. The main faring could just enclose the rider and the rear-steered wheel. The front wheels could be mounted outside the faring with individual wheel pants to streamline them. Joy-stick steering could be substituted for the under-seat steering to further reduce the faring width. While the drag coefficient for this layout might be greater that the original design, the cross-sectional area would be significantly reduced and the product of drag coefficient and cross-sectional area would make the vehicle more aerodynamic. This would be at the expense of some cargo capacity. In addition, having two front wheels that do not steer is much more stable when going over obstacles when compared to two steered wheels which can be deflected causing unwanted steering inputs.)



The continued development or an all-weather commuter vehicle that could be safely integrated with traffic has also been largely curtailed by pedal-electric technology.

But is the electrification of bicycles and tricycles a bad thing for the development of human-powered commuter vehicles?

Let's look at the electric bicycle regulations for Washington state to get more specific on answering that question. Keeping in mind that tricycles and velomobiles fall under these requirements. 




The above regulation lost part of a sentence, one that is as important as the categories. The second sentence should read "The electric bike must have two or three wheels and fully functioning pedals" .
The eliminates vehicles like the Pod Bike (strange name for a four-wheel vehicle) and the Quattro Velo if it includes electrification. Now this is a bad requirement if one is designing an all-weather commuter vehicle, since for a given track and weight distribution, a quad had 50% more rollover resistance than a trike. On the other hand, a four-wheel motorized vehicle falls into the category of a micro car with all of its extra regulations.

Another electric bike regulation says that the vehicle must have a bicycle seat and for trikes, one of the wheels must be at least 20" in diameter. Now requiring a bike seat would eliminate all recumbents. And I, like the Cyclodyne designer, prefer three 16" wheels because they allow a smaller vehicle volume.

Class 3 is a recent and welcome addition to what is considered an pedal-electric vehicle.

Now a fit cyclist can generate 200+ Watts of mechanical power. So with more than three times the available power, aerodynamic and weight considerations can essentially be ignored. One problem that this surplus power can't solve is vehicle width.

For visibility in traffic, it is desirable that the rider's head height is no lower that that of a driver in a sports car. For static tricycles, roll-over-resistance is developed by making the vehicle width approximately on the order of twice the height of the vehicles center-of-gravity, c.g. If the designer is not diligent in keeping the c.g. low, the vehicle width can get excessive.  It is my opinion that electric velomobiles like the Elf, with a 48" width, are too wide to share dedicated bike lanes with other vehicles.
I think that electric velomobiles should have a width restriction of 1m (39") for access to dedicated and roadway adjacent bike lanes.

An electrified version of the Cyclodyne, at a 38" width, could easily manage the 28mph speed limit for a Class 3 electric tricycle and be a very beneficial all-weather pedal-electric commuter vehicle.

Hephaestus